
Synesis: A Journal of Science, Technology, Ethics, and Policy 2013
© 2010-2013 Potomac Institute Press, All rights reserved

G:85

Introduction

In-vivo neuromaging relies on several measurement mo-
dalities, which either probe the vascular or the neuronal
response. In most widespread use are functional mag-
netic resonance imaging (fMRI) to asseess the vascular
responses, and electro- and magnetoencephalography
(E/MEG) for neuronal responses (1). Other modalities
(e.g., functional near-infrared spectroscopy, fNIRS) are
also important, but are not discussed here for lack of space.
The large datasets resulting from neuroimaging measure-
ments require a massive amount of offline processing to
obtain meaningful results. This is a consequence of both

the size of the datasets, as well as the need to fit compli-
cated models or apply a fixed processing chain (consisting
of several algorithms) to the data (2). Furthermore, often
several different models need to be tested and new models
and pre-processing algorithms are continually added to the
fund of capable computational tools. As a consequence, a
majority of the neuroscientific community has adopted the
free software model (3-5), and some software packages
have been maintained for almost two decades.

Almost every software (exceptions here being some low
level machine code) is based on some other software (e.g.
compilers, libraries, interpreters). Depending whether the

Interoperability of Free Software Packages to Analyze
Functional Human Brain Data
Tilmann Sander-Thömmes 1*, Alois Schlögl 2

1. Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt, Berlin, Germany, Email:
tilmann.sander-thoemmes@ptb.de. 2. Scientific Computing and Core Infrastructure, Institute of Science and Technology,
Klosterneuburg, Austria.

Abstract

Functional neuroimaging of the human brain using non-invasive measurement methods is a
success story of both hard- and software development. Hardware is a domain of commercial
companies for good reasons such as the need to maintain an expensive set of machines. Software
does not require massive investments to start and therefore the development of analysis software
follows different schemes. It can be commercial or non-commercial, free, open source or propri-
etary. A multitude of highly specialized analysis methods and complex processing chains have
been documented in the scientific literature. It is highly inefficient if methods or algorithms are
coded from scratch every time that they are needed for a research project. Therefore, large parts
of the neuroscience research community have followed the “Linux” or free software paradigm in
developing their own software tools in a cooperative way. Here typical properties of successful
free software packages are described and it is argued, that a further boost is possible through in-
teroperability of packages without sacrificing the specific target of each package. Interoperability
can be achieved through a common data format for measured and processed data or through the
incorporation of packages into other packages, i.e., delegating tasks to the most suitable package.

Keywords: free software, interoperability, brain imaging, electro/magnetoencephalography,
functional magnetic resonance imaging

G:86

Synesis: A Journal of Science, Technology, Ethics, and Policy 2013

prerequisites are freely available or not, we can distin-
guish between software ecosystems that are truly free
and those that are proprietary. A collection of functions
(a suite or toolbox) can be written for specialized math-
ematics software (e.g., the non-free MatlabTM [www.
mathworks.com] or its free alternative Octave [www.
gnu.org/software/octave/] and some functions suites are
coded in a general purpose language (such as C or C++)
using the provided specialized mathematics libraries.
Another tool is the free Python (www.python.org) lan-
guage and its Python(x, y) distribution for use in scien-
tific applications (6).

It is important to understand the difference between the
terms “free” software and proprietary software. Free
software, as defined by the Free Software Foundation,
provides “the users the freedom to run, copy, distribute,
study, change, and improve the software” (7). In contrast,
proprietary software has at least one of more of these
rights withheld by some entity. Note, however, that the
freedom to improve software implies that the software is
open source. The reverse is not necessarily the case. It is
interesting to note that the very nature of software facili-
tates the emergence of commercial monopolies, but at the
same time major commercial support for free software
exists. It is much more difficult to obtain a hardware mo-
nopoly, as hardware is assembled from parts from many
different independent suppliers.

In the following essay we introduce the ecosystem of free
software packages, and describe two typical interoper-
ability mechanisms. Implications and added value from
interoperability are discussed, and conclusions are drawn
relevant to use, ethics and policy issues.

Software maintenance and acknowledgement

To develop successful software packages several condi-
tions must be met:

i. An initial core development targeted at a fairly
broad set of questions must reach maturity to share
the code with others.

ii. Funding for software maintenance must be secured
(this is not an easy task as the maintenance itself is
not a scientific task and therefore difficult to justify
in a grant application).

iii. An easy and quick response mechanism to any soft-
ware bugs reported by the users must be in place.

iv. The software must successfully link with the sci-
entific community (e.g., tutorials and introductory
material should be offered). Code is sufficiently
accessible for new users. An up-to-date website or
help system is usually self-evident.

v. There is a person similar to a “Cerberus” separat-
ing useful additions to the package from unwanted
clutter (if you are a “Cerberus”, please do not be of-
fended, your role is very important. Often it is very
difficult to get past the Cerberus with code sugges-
tions, but that is one of the secrets to achieving a
successful package. After all the Cerberus has the
responsibility for integrity and consistency of the
code).

Points (i-v) are by no means exhaustive; but rather serve
to illustrate the complexity of the task.

A largely unresolved issue is the proper acknowledgment
of software package contributors, (i.e., the maintainer(s),
code developers, and authors of published methods incor-
porated into the package). A processing chain can consist
of several steps, each based on an algorithm published
in a peer reviewed journal. Users of the software pack-
age can certainly not cite all original work; instead only
the work relevant to the scientific question addressed in
the study need be cited. Therefore, a mechanism must
be developed to easily acknowledge contributors to free
software packages and this acknowledgment should be
regarded to be of similar value as a scientific paper. To in-
clude such a citation in the actual code is only a first step.
(For example, the following citation from reference 9)):

function vol = ft_headmodel_singlesphere(geometry,
varargin) % For MEG this implements Cuffin BN, Co-
hen D. “Magnetic fields of a dipole in % special vol-
ume conductor shapes” IEEE Trans Biomed Eng. 1977

Jul;24(4):372-81.

Future developments need to facilitate or automate bug
reporting, so that first use disappointments are avoided. A
two-level system of user contributions might be needed,
in which first level consists of central hosting of untested
user contributions; and second level consists of full inte-
gration of new code into the package.

G:87

Synesis: A Journal of Science, Technology, Ethics, and Policy 2013

Interoperability of software packages

Collecting a set of functions into a software package
provides users with powerful tools to rapidly perform so-
phisticated analyses. A second degree of re-usability can
be attained if several packages interact and complement
each others’ functionality. This can be an application
programming interface that enables function calls across
package boundaries. At minimum, a data exchange proce-
dure between packages can be defined. These two types
of interactions are illustrated in Figure 1 and 2.

If a close integration of packages is not possible, a func-
tionality similar to interoperability can be achieved by a
data container with log capability as shown in Figure 2.
Package A loads the data and processes them using func-
tion B, and stores the data back to the container. Package C
then takes the data and modifies them into the final result.
Each time the data in the container are changed, an entry
must be added to the log. For this type of interoperability,
packages like the BioSig (11) are very important as they
provide input/output operations for many data formats.

Successful interoperability between different software
systems depends on a number of different factors. State-
of-the-art software structure requirements must be fulfilled
so that two ore more systems work well together. Tech-
nical issues are sometimes also addressed by national or
international standards and quasi-standards. If standards
are not available, the free software development model
provides an efficient way to establish quasi-standards.
Another factor is legal requirements that establish if
and how the systems can be connected together without
infringement of rights. In software, these legal require-
ments mostly concern copyright and software licencing,
yet sometimes, software technology patents need to be

Figure 1. Multiple package data analysis pipeline. A top-
level package A operates on data in memory and draws
on the functionality from B and C. Packages B and C do
not need to be based on the same programming language.

As shown Figure 1, measured data are loaded into memo-
ry, and a (top-level) package operates on these data. This
top-level package uses functions from other packages for
certain calculations. The final result is stored in memory
and ready for visualization or storage. The packages need
not be based on the same programming language, but the
languages do need to provide programming interfaces.
Examples for this type of interaction are SPM (8), which
uses functions related to magnetoencephalography form
FieldTrip (9). Another example is FieldTrip using func-
tions from EEGLAB (10) to calculate independent com-
ponent analysis. In the first case, FieldTrip is serving SPM
(in the way that package B is called from A in Figure 1),
in the second case FieldTrip is benefitting from EEGLAB.

Figure 2. Data container based analysis pipeline. The
data container model allows a pipeline of functions from
different packages. A and C to modify its content and
place log entries in the container. Still some packages
might call functions from other packages as A is calling

a function from B.

G:88

Synesis: A Journal of Science, Technology, Ethics, and Policy 2013

considered. However, patents are considered a threat to
interoperability and free software development often uses
licensing regimes (e.g., GPL v3) with provisions against
software patents. Obviously, patenting of software plat-
forms, engagement of software intellectual property (IP)
rights, and the leveraging of these rights can affect the
ways that neuroimaging (and other types of bioengineer-
ing tools in/for neuroscience) are used and gain influence
in international markets and socio-economic spheres.
This raises a host of ethico-legal and even political issues,
which while exceedingly relevant to science and technol-
ogy policy, are outside the focus of this essay (for insight
to these issues and problems, see recent work of Brindley
and Giordano (12,13).

Discussion

If two separately developed packages share algorithms,
their interoperability simplifies the verification of results
associated with these algorithms. For non-compatible
packages, a complete processing pipeline must be en-
abled in both packages. For interoperable packages, only
the calls to the different routines implementing the same
algorithm need to be repeated, and their output can be
compared. Besides formal interoperability of packages
through an application programming interface, it is op-
timal to check results provided by a given package func-
tion. Test data with known behavior need to be analyzed
with the function. In case of multiple levels of interoper-
ability, a certain basic trust in the developers ability is
needed, as not all functionality can be verified.

An obvious question is why different packages have
evolved instead of a single package covering all ap-
plicable methods and algorithms? In the main, this is a
consequence of the interdisciplinary nature of the field
and specialization in each contributory subfield. Re-
search can be limited to one subfield, for example, for
a pure fMRI study a single software package is often
sufficient; Functionality will be tailored towards fMRI,
allowing rapid data processing. Another project might
involve MEG in a study involving anatomical MRI im-
ages. Consequently, an electrophysiological package
is needed with some functionality from an MRI pack-
age. If in a secondary step the MEG data require more
sophisticated analysis, then a dedicated package might
be called from the primary electrophysiological pack-
age. As each package requires specialist knowledge, it
is easier to maintain its integrity and verifiability if the
package is limited in scope, but it should contain a pro-

gramming interface. This represents an efficient use of
the resources available to the research community.

To reiterate, the term free software package is not a con-
tradiction to commercialization. There is quite a lively
commercial ecosystem around free software, successful
examples are Redhat (providing services to open source
software and having 1.3 billion revenue in 2012 (14)),
Google (an advertising company based on open source
software (15)), etc. To clarify this, a possible future sce-
nario is that eventually a commercial ecosystem around
free neuroimaging software will develop, and it will be
for the benefit of patients, and other shareholders in the
healthcare system.

Depending upon the progress of neuroimaging as a tool
to obtain diagnostic information for patients (e.g., with
stroke, Parkinson´s, and Alzheimer diseases, etc.) the al-
gorithms tested in free packages might be incorporated
into a commercial device. The added value to the device
manufacturer is then not based on (secretive) algorithms,
but rather can be based on device reliability, ease of main-
tenance, data privacy, and ease of use. In this scenario it
might even be required that the algorithm used for the ex-
traction and/or identification of a diagnostic parameter is
documented together with results (e.g, coupling strength
between two brain areas might have significant diagnos-
tic value). But a reported coupling strength dramatically
depends on the algorithm chosen to calculate it and this
needs to be documented. In laboratory medicine proce-
dures, hardware design is proprietary, but the machine
is calibrated using a standard sample. Use of a standard
sample does not carry-over to the software environ-
ment, and instead, an open documentation of algorithms
is needed to achieve reproducibility and the necessary
control. This then necessitates guidelines and policies to
direct and parameterize how such packages can, should,
and cannot be employed.

Conclusions

Free software packages have become cornerstones of
neuroimaging research. Their development provides
impressive example of international cooperation. The
conclusions drawn here, that interoperability affords an
enormous additional capability is probably important
both for other fields of science, as well as for the de-
velopment of regulatory codes that enable large-scale
information and technology sharing and transfer (on an
international scale).

G:89

Synesis: A Journal of Science, Technology, Ethics, and Policy 2013

If a method or algorithm published in a peer reviewed jour-
nal is included in a free software package it can serve as
a positive open-access review. In addition to shared soft-
ware packages, other tools for sharing of raw data (“open
data”) have been developed . Certain safeguard benefits
might outweigh disadvantages and misuse (16). Yet, the
ethical, legal, and social implications of large-scale open
data (i.e., “Big Data”) remain in question. That advances
in software development, use, and sharing will contribute
to the growth and scope of such Big Data projects is un-
deniable. What this means for the economics, laws and
probity of science in society is yet to be determined.

Acknowledgments

We are indebted to the following persons for helpful dis-
cussions and the exact type of stimulating collaboration
discussed in the article: Y. Bao (China), A. de Cheveigné
(France), V. Litvak (Great Britain), R. Oostenveld (The
Netherlands), H. van Rijn (The Netherlands), U. Stein-
hoff (Germany), and B. Zhou (China). Furthermore the
organizers of the 10th Sino-German Workshop (Ham-
burg, September 2013), Prof. E. Pöppel and Prof. S. Han,
as well as the organizers of the Biomedizinische Technik
Konferenz 2013 (Graz, September 2013) are acknowl-
edged for their support and the possibility to present re-
sults related to this article. A final thank you note goes
to Prof. J. Giordano of Ludwig Maximilians Universität
(Germany) and Georgetown University Medical Center
(US) for suggesting this article.

Competing interests

The authors declare that they have no competing interests.

References

1. Valdés-Sosa PA, Kötter R, Friston KJ. Introduction:
multimodal neuroimaging of brain connectivity. Phil
Trans R Soc B. 2005; 360:865-867.

2. Sander TH, Knösche TR, Schlögl A, Kohl F, Wolt-
ers CH, Haueisen J, Trahms L. Recent advances in
modeling and analysis of bioelectric and biomagnetic
sources. Biomed Tech. 2010; 55:65-76.

3. Baillet S, Friston K, Oostenveld R. Academic software
applications for electromagnetic brain mapping using
MEG and EEG. Computational Intelligence and Neu-
roscience [Internet]. 2011: ID 972050. Available from:
http://www.hindawi.com/journals/cin/2011/972050/.

4. Gewaltig M-O, et al. Research topic “Python in neu-
roscience”. Frontiers in Neuroinformatics [Internet].
2009. Available from: http://www.frontiersin.org/
Neuroinformatics/researchtopics/Python_in_neuro-
science/8.

5. Hanke M, Halchenko YO. The 2011 survey of soft-
ware usage in neuroscience research – Supplemen-
tary results. NeuroDebian [Internet]. 2011 [cited 2013
November]. Available from: http://neuro.debian.net/
survey/2011/results.html.

6. The GNU operating system: What is free software?
[Internet]. 1984-2013 [cited 2013 November].
Available from: https://www.gnu.org/philosophy/
free-sw.html.

7. Gramfort A, Luessi M, Larson E., Engemann D, Stroh-
meier D, Brodbeck CL, Parkkonen L, Hämäläinen M.
MNE software for processing MEG and EEG data,
NeuroImage. 2013; in press.

8. SPM [homepage on the Internet]. Available from:
http://www.fil.ion.ucl.ac.uk/spm/.

9. FieldTrip [homepage on the Internet]. Available from:
http:/www.ru.nl/donders/fieldtrip.

10. EEGLAB [homepage on the Internet]. Available from:
http://sccn.ucsd.edu/eeglab/index.html.

11. BioSig [homepage on the Internet]. Available from:
http://biosig.sourceforge.net/.

12. Brindley T, Giordano J. Neuroethical, Legal, and So-
cial (NELS) Implications of ownership of neurotech-
nology within the milieu of increasingly globalized
intellectual property protection. Poster presented at
International Neuroethics Society 2013 Annual Meet-
ing, Nov. 8, 2013, San Diego, CA.

13. Brindley T, Giordano J, Neuroimaging: correlation,
validity, value and admissibility: Daubert – and reli-
ability – revisited. AJOB Neurosci. in press.

14. Kerner SM. Red Hat grows business to $1.3 billion
as OpenStack Cloud opportunity looms large. IT
Business Edge Network. 2013; March 28. Available
from: http://www.datamation.com/cloud-computing/
red-hat-grows-business-to-1.3-billion-as-openstack-
cloud-opportunity-looms-large.html.

15. Google Open Source Programs Office [homepage
on the Internet]. Available from: https://developers.
google.com/open-source.

16. Cartlidge E. Opening data up to scrutiny. Physics
World. 2013; October:18-19.

